Experimenting and Learning
Feel free to contact me if you don't understand anything
This project is maintained by HishamElreedy
اللهم لا علم لنا الأ ما علمتنا به انك انت علام الغيوب
A \(50\Omega\) Source has \(2W\) maximum available power. Determine its Thevenin and Norton equivalent circuits.
$$R_{source}=R_{thevenin}=50\Omega$$ as if we turned off source and see from output terminal we will find only it $$P_{max}={{V_{thevenin}}^2 \over 4R_{thevening}}=2W$$ $$V_{th}=20V$$ $$I_{norton}={V_{thevenin} \over R_{thevenin}}=0.4A$$
If the source of Problem (1) is to be connected to a load of impedance \(75-j25 \Omega\), design the required matching network. Hence, determine its Z, Y and ABCD parameters.
$$Z=\begin{bmatrix}Z_{11} & Z_{12}\\Z_{21} & Z_{22}\end{bmatrix}, Y=\begin{bmatrix}Y_{11} & Y_{12}\\Y_{21} & Y_{22}\end{bmatrix}, T=\begin{bmatrix}A & B\\C & D\end{bmatrix}$$ $$\begin{bmatrix}V_{1} \\ V_{2}\end{bmatrix}=\begin{bmatrix}Z_{11} & Z_{12}\\Z_{21} & Z_{22}\end{bmatrix}\begin{bmatrix}I_{1} \\ I_{2}\end{bmatrix}$$ $$Z_{11}=\left.\frac{V_1}{I_1}\right\vert_{I_2=0}=75-j25$$ $$Z_{12}=\left.\frac{V_2}{I_1}\right\vert_{I_2=0}=75-j25$$ $$Z_{21}=\left.\frac{V_1}{I_2}\right\vert_{I_1=0}=75-j25$$ $$Z_{22}=\left.\frac{V_2}{I_2}\right\vert_{I_1=0}=75-j25$$